

## The WFIRST Microlensing **Exoplanet Survey:**

Figure of Merit

ide-Field Infra-Red Survey Telescope



**David Bennett** University of Notre Dame



### WFIRST Microlensing Figure of Merit

- Primary FOM1 # of planets detected for a particular mass and separation range
  - Cannot be calculated analytically must be simulated
    - Analytic models of the galaxy (particularly the dust distribution) are insufficient
  - Should not encompass a large range of detection sensitivities.
  - Should be focused on the region of interest and novel capabilities.
  - Should be easily understood and interpreted by non-microlensing experts
    - (an obscure FOM understood only be experts may be ok for the DE programs, but there are too few microlensing experts)
- Secondary FOMs (as presented by Scott)
  - FOM2 habitable planets sensitive to Galactic model parameters
  - FOM3 free-floating planets probably guaranteed by FOM1
  - FOM4 fraction of planets with measured masses
    - Doesn't scale with observing time
    - Current calculations are too crude

### Primary Microlensing FOM

- Number of planets detected (at  $\Delta\chi^2$ =80) with 1 M<sub>Earth</sub> at 1 AU, assuming every main-sequence star has one such planet.
- For a 4 × 9 month MPF mission, this FOM~400.
   (Note MPF is 1.1m, ~0.65 sq. deg, 0.24" pixels)
- For nominal 500-day WFIRST microlensing program, decadal survey assumes FOM~200
- Alternative FOMs:
  - Number of planets detected (at  $\Delta\chi^2$ =80) with Earth:Sun mass ratio (3×10<sup>-6</sup>) at 1 AU, assuming every main-sequence star has one such planet. Nominal WFIRST FOM~50
  - Number of planets detected (at  $\Delta\chi^2$ =80) with an Earth-mass planet in a 2-year orbit (not yet calculated). Period of a planet at  $R_{\rm E}$  scales as  $T_{\rm F} \sim M^{1/4}$  instead of  $R_{\rm F} \sim M^{1/2}$

### Planet Discoveries by Method

masses

- ~400 Doppler discoveries in black
- Transit discoveries are blue squares
- Gravitational microlensing discoveries in red
  - cool, low-mass planets
- Direct detection, and timing are magenta and green triangles
- Kepler candidates are cyan spots



### Planet mass vs. semi-major axis/snow-line

- "snow-line" defined to be 2.7 AU  $(M/M_{\odot})$ 
  - since L∝ M² during planet formation
- Microlensing discoveries in red.
- Doppler discoveries in black
- Transit discoveries shown as blue circles
- Kepler candidates are cyan spots
- Super-Earth planets beyond the snow-line appear to be the most common type yet discovered



#### WFIRST's Predicted Discoveries



The number of expected WFIRST planet discoveries per 9-months of observing as a function of planet mass.

### Microlensing "Requires" a Wide Filter

- Roughly 1.0-2.0 μm
- In principle, this is negotiable
- In practice, probably not
  - Exoplanet program is "equally important" to DE program so it should probably get to select at least 1/5 filters
  - WL has requested 3 IR passbands, BAO needs spectra, SNe can probably live with 3 WL filters
  - Rough guess: FOM reduction by ~25% with a WL filter
    - So, DE programs should consider if this filter is worth 125 days of DE observing time
- Multiple filter options => much more simulation work
  - Field locations & Observing Strategy
  - Throughput
  - PSF size

### Mission Simulation Inputs

- Galactic Model
  - foreground extinction as a function of galactic position
  - star density as a function of position
  - Stellar microlensing rate as a function of position
- Telescope effective area and optical PSF
- Pixel Scale contributes to PSF
- Main Observing Passband ~ 1.0-2.0 μm
  - throughput
  - PSF width
- Observing strategy
  - -# of fields
  - Observing cadence
  - Field locations

### Microlensing Optical Depth & Rate

Bissantz &
 Gerhard (2002)
 τ value that fits
 the EROS,
 MACHO &
 OGLE clump

 Revised OGLE value is ~20% larger than shown in the

measurements

giant

plot.

 Observations are ~5 years old



## Select Fields from Microlensing Rate Map (including extinction)



Optical Depth map from Kerins et al. (2009) - select more fields than needed

### **Determine Star Density**

- Match Red Clump Giant Counts for selected fields
- Varies across the selected fields
- Use HST CM diagram for source star density



# Create Synthetic Images & Simulate Observing Program

- Simulate photometric noise due to blended images
- Depends on
  - Star density
  - Pixel scale
  - Passband
  - Telescope design
- Simulate Microlensing light curves
  - Depends on observing cadence
- Identify simulated light curves with detectable planetary signals
- Determine planet detection rate



#### Parameter Uncertainties

- Send simulated light curve data to Scott Gaudi (and Joe Catanzarite from JPL-WFIRST Project Office)
- They estimate parameter uncertainties using a Fisher-Matrix method
- Evaluate planet discovery penalties from interruptions of observations

## Future Work (2<sup>nd</sup> SDT Report)

- Use lens star detection and/or microlensing parallax to determine host star masses
- Add this to Fisher matrix parameter uncertainty estimates

#### mass-distance relations:

$$M_{L} = \frac{c^{2}}{4G} \theta_{E}^{2} \frac{D_{S} D_{L}}{D_{S} - D_{L}}$$

$$M_{L} = \frac{c^{2}}{4G} \tilde{r}_{E}^{2} \frac{D_{S} - D_{L}}{D_{S} D_{L}}$$

$$M_{L} = \frac{c^{2}}{4G} \tilde{r}_{E} \theta_{E}$$

# Simulate Lens Star Detection in WFIRST Images

Denser fields yield a higher lensing rate, but increase the possibility of confusion in lens star identification.



A 3× super-sampled, drizzled 4-month MPF image stack showing a lens-source blend with a separation of 0.07 pixel, is very similar to a point source (left). But with PSF subtraction, the image elongation becomes clear, indicating measurable relative proper motion.

### Microlensing Tracibility Matrix

## Presumably required for June report draft from Jonathan Lunine:

| Foundational<br>Questions                                       | Science Goals |                                                                                                            | Science Objectives                                                                                                                                                  | Scientific Measurement Requirements                                                                                                                                                    |                                                             | Instrument Functional Requirements                                               | Mission Requirements                                                                                                                                                                             | Implementation requirements |
|-----------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Found                                                           |               | 3000.00                                                                                                    | Colorido Objectives                                                                                                                                                 | Observables                                                                                                                                                                            | Quantity to measure                                         | mstrument i unctional requirements                                               | mission requirements                                                                                                                                                                             | mpononatorrequienens        |
| G1 is our solar system typical or rare among planetary systems? | S01           | Determine the occurrence and architectures of planetary systems across a significant portion of the Galaxy | Make a definitive measurement of the frequency of bound planets and their masses with separations of 0.5 AU and larger                                              | Provide the ability to detect at least 1000q planets of Uranus mass or larger, where q is the fraction of stars with planets in the 0.5-2.5 AU region.                                 | Large number of stars, Stellar brightness variation to XX % | Monitor > 0.5 billion star-years of Galactic bulge stars brighter than J=23      | Aperture size 1.1 m  FOV 0.65 sq. deg  Wavelength 600-1700 nm  Detector performance QE > 70% 900-1400 nm; >50% 700-1600 nm  Exposure time 2.8 min/field  Focal plane 150 Megapixels 4 pointings. |                             |
|                                                                 |               |                                                                                                            |                                                                                                                                                                     | Measure planet masses to 20% accuracy                                                                                                                                                  |                                                             | Observe at least once per 15 minutes for 80% of the time for periods > 20 days.  |                                                                                                                                                                                                  |                             |
|                                                                 |               |                                                                                                            |                                                                                                                                                                     | Measure separations and mass ratios to 10% accuracy.                                                                                                                                   |                                                             | Photometric accuracy better than 1% for a 2.8 minutes exposure of a J=19.9       |                                                                                                                                                                                                  |                             |
|                                                                 |               |                                                                                                            |                                                                                                                                                                     |                                                                                                                                                                                        |                                                             | Better than 0.3" angular resolution to resolve the brightest main sequence stars |                                                                                                                                                                                                  |                             |
|                                                                 |               | Determine the dynamical histories of planetary systems                                                     | Detect a sufficient number of free-floating planets and measure their masses so as to understand the statistical occurrence of planetary ejections                  | Detect at least 1000y free-floating planet<br>events, where y is the number of free<br>floating planets per star in the Galaxy                                                         |                                                             |                                                                                  |                                                                                                                                                                                                  |                             |
|                                                                 |               |                                                                                                            |                                                                                                                                                                     | Measure free-floating planet masses to 50% accuracy.                                                                                                                                   |                                                             |                                                                                  |                                                                                                                                                                                                  |                             |
| G2 –Are potentially habitable worlds common in the Galaxy?      | \$O3          | Determine the frequency of occurrence of Earthmass planets in and near the habitable zone                  | Make a definitive measurement of the frequency of bound planets in the Earth-Mars mass range with separations of 0.5 AU and larger                                  | Provide the ability to detect at least 200r planets of mass between that of Earth and Mars, where r is the fraction of stars with Earth-to-Mars-mass planets in the 0.5-2.5 AU region. | Large number of stars. Stellar brightness variation to YY%. |                                                                                  | Aperture size 1.1 m  FOV 0.65 sq. deg  Wavelength 600-1700 nm                                                                                                                                    |                             |
|                                                                 |               |                                                                                                            |                                                                                                                                                                     | Measure terrestrial planet masses to 20% accuracy                                                                                                                                      |                                                             | Detector perfo<br>QE > 70% 900<br>nm                                             | Detector performance<br>QE > 70% 900-1400 nm; >50% 700-1600                                                                                                                                      |                             |
|                                                                 |               |                                                                                                            | Determine with sufficient accuracy the semi-<br>major axes of terrestrial planets, and the<br>stellar type, so as to determine the<br>habitability of said planets. | Measure separations within the habitable zone and masss ratios to 10% accuracy.                                                                                                        |                                                             |                                                                                  | Focal plane 150 Megapixels 4 pointings.                                                                                                                                                          |                             |
|                                                                 |               |                                                                                                            | Determine the frequency of free-floating super-Earth planets to assess the maximum possible number of free-floating habitable "Stevenson" worlds.                   | Measure free-floating planet masses to 50% accuracy.                                                                                                                                   |                                                             |                                                                                  |                                                                                                                                                                                                  |                             |

